
Dynamic characteristics of an electromagmticcally driven nlgger regulator 315 

4, Komraz* L. A. t A dynamic model of an electromagnetically driven aigger 
repiator, fnth.Zh Mekh Tverd.Teia, W, 1%j7. 

5, Neimark, lu. I. x The method of point transformations in the theory of nonlinear 
oscillations. Izv,VUZ, Radiofizlka Vol.l, W2, 1958. 

6. Komraz, L. A., Rifurcations of the fixed points of a point transformation under 
which the root of the characteristic polynomial passes through the value h = -5. 
PMM Vol.32, Np3, 1968. Translated by A. Y. 

PERTURBATION OF NATURAL SI!?ALL VIBRATION 

FREQUENCIES UPON INTRODUCTION OF DAMPING 

PMM Vol_ 33, l@2, 1969, ppe 328-336 
A. C, RAMM 
(Leningrad) 

(Received April 1, 1968) 

It is known that the complex natural frequencies p,,= <m, of B vibrating system take 
the form pn’= --a, -l- &Q~‘_ Q> 0 upon the introduction of damping. It can be shown 

that under some Condition the imaginary part of the wmplex frequency hance varies thus, 

c+~*<% for ON>& oN’),oN for W,<O 

I %I =XUaXn/OnI (1) 

The proof of the inequalities (1) follows from this lemma. 
Lemma, Let A > 0, B > 0, H > 0. be self-adjoint Ed X it matriCes, where the 

Condition 
(AX, x)” < 4 (A% 4 (Bffs, 4 

(weak damping) is satisfied. Let p,, = iw, be the roots of the equation 

det (paA"+ B I= 0 (2) 

and pm’ the roots of the equation 
$A _O pR + B) = 0 f’:) 

Let lpN I= ma+ /pa]. Then PN’= --UN + to>, where a~’ > 0 ) and the inequali- 
ties (1) are satisfied, Here pn’ denotes the root of (3) for which lo#‘l = max, 1 ON’]* 

Proof. Let zi’ be the eigenvector Corresponding to the eigennumber &,’ , that is 

CPN’~A $ px’N + E) xN’ = 0 (4) 
Then 

Since R 2 0, A > 6, then aH’ 2 0. Furthermore 

@N = 

From the minimax principle it follows that 

(Bx, 2) lBxN’, “N’) 
ON *=supx (Ax, 3 >i :A+‘> XN’) (7) 
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Inequalities (1) follow from (6) and (7). From the equation of motion 

Au” +Ru’$-B&O (6) 
we obtain the equation 

paAx$pRx+Bs=O (9) 

by means of substitution u = Bt;2, where x is independent of t . 

The natural frequencies of this equation are found from the relationship (3)) hence the 
inequalities (1) result from the lemma. 

Note 1. As is seen from the proof of the lemma, the condition R & 0 is utilized 

just to prove the inequality a,’ & 0. The inequalities (1) will hold for any X satisfying 
the weak damping condition, which conserves the ~bra~onal nature of the process since 

only the square of the form (Rz~‘, 2~‘) enters into (6). 
Inequalities analogous to (1) are valid for continuous systems as well. For example, 

let US consider the equation of the vibrations of a finite elastic string, In this case the 
equation of motion is utt + Rut + Bu = 0 (IO) 

where B is a positive definite operator in the Hilbert space H = La (0, 1), and R is a 
linear operator describing friction. 

For example, if a string fixed at the endpoints vibrates in a viscous medium, then R 
is the operator of multiplication by a positive constant, B = -t(#(.,.)/d2) and is 
defined as an operator in H by the boundary conditions u (0) = u (1) = 0. 

Time is considered as a parameter. The operator B has the natural frequency spectrum 

0<@rz<W~2<...<,(w,2<. .., lim0,2=Q: 
- 

The operator B-l has the values vf =f 0;s at points of the spectrum, so that maxn v,‘= 

==o, -_a. The operator B-l will be completely continuous in H, hence if II is a bounded 

operator, the operator B-1R is also completely continuous. If we put u =2 eP’&where 
Y c: H is independent of 5, then we obtain from( 10) 

(p21 -I- pR + B)v= 0. (11) 

Since the operator B-l exists, and is bounded, then (11) is equivalent to the following: 

p2B-lv t_ pB-‘Rv + v= 0 W) 

Since the operators B-l and B-l R are completely continuous. the spectrum of (12) is 

discrete ( [I], p. 30). For R = 0 the points of the spectrum of{ 12) are pn= itin* where 
wnz are the eigennum~rs of the operator B. 

In order for the reasoning below to be analogous to that presented in the examination 

of the finite case. let us call the quantity q = l/p the complex natural frequency of Eq. 

(X2). Then the frequency 4% = (io $’ = ---iv, is the largest complex frequency. in 

absolute value, of (12) for R = 0. Let us show that the inequality 

Vi’ < vi (13) 

holds for R # 0 for the perturbed frequency qfl = ---a, - iv,’ , and moreover, a, > 0 

for R 2 0 . 
Reasoning as in the proof of the lemma, we deduce from (11) 

n2 (% 4 + 4 WV, 4 + (~7 r4 = 6 

Here (u, U) is the scalar product in H. Hence 
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Since 

then vi <vl. 
If R > 0, then taking into account that (Bv, v) > 0, we obtain the inequality a, >, 0 

from the definition of a,. The proposed assertion is proved completely. Let us note that 

the sign in front of the root in (14) has been selected so that the equality ql’ = q1 =ivl 

would hold for R=O . 

Note 2. The following theorem is proved by the reasoning presented. 
Theorem. Let b be a positive definite operator in the Hilbert space R, which has 

a completely continuous inverse operator B -l. Let R be a linear operator, where B-II2 

is a completely continuous operator. Let vX2 > vz2 >, . . . > 0 be the eigennumbers of 
the operator B-l. Then the imaginary part of any eigennumber of the operator q2B -I- 
+ qR + 1 is not greater than vl, but if the operator R is nonnegative, then the real 
parts of the eigennumbers of the operator q2B -I- qR f I are nonpositive. 
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There are several approximate methods [l-4] available for solving practical problems 
having to do with oscillatory systems whose parameters vary with time. The procedure 
for analyzing such systems proposed in the present paper is based on the analogy between 

parametric and forced oscillations in a certain nominal oscillator with parameters chosen 
in a certain special way. Our approach, which closely resembles the idea behind the 

WKB ( Wentzel-Kramers-Brillouin) method [3- 51. provides increased opportunities for 
constructing effective approximate solutions of problems of the indicated class. 

1. We begin by considering the following linear second-order differential equation 
to which many problems of applied dynamics can be reduced [l and S]: 

q -I- 2n (t)q + k2 (Oq = F (4 (I.11 

The Euler substitution reduces Eq. (1.1) to the form 

b; + P2 (t) Y = Q (0, (~2 = k2 - na - n ) (2.2) 

y = q exp Ij n (t) dt] , Q =Fexp [in(t)dt] 

The solution of the homogeneous equation corresponding to Eq. (1.2) is obtainable in 


